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Abstract. The eigenstates of a particle in a rectangular-well potential with appropriate
boundary conditions are proved to be the standard basis of an irreducible representation of the
su(1, 1) Lie algebra. The algebra operators are constructed explicitly and the energy levels and
theR-function are calculated. Due to the general connection between the generators ofsu(1, 1)

we can algebraically relate a wide class of one-dimensional potentials to thesu(1, 1) Lie algebra
in this framework. This algebraic approach allows us to write an algebraic parametrization for
the R-function.

1. Introduction

Lie algebras are among the basic tools of modern physics. Algebraic approaches to
the problems of atomic, molecular, nuclear and hadronic physics have been extensively
employed in the last decades, e.g. the interacting boson model in treating quadrupole
collective motion [1], the description of the nuclear molecular states by dipole rotations
and vibrations [2], and spectrum generating algebra techniques for scattering problems.
Many applications have used the algebraic scattering theory [3, 4], in particular we mention
their success in the classification of exactly solvable potentials [3, 5]. One-dimensional
atom–molecule collisions have also been studied by using a combination of differential
and algebraic techniques for a variety of potentials [6]. Another example is the recent
introduction of supersymmetric quantum mechanics (SUSY), which allows pairing in
isospectral potentials [7].

New directions appeared with the developing of the ‘quantized’ orq-deformed Lie
algebras (quantum groups) [8], like exactly one-dimensional solvable potentials [9] or the
analysis done in [10] (see also the references herein).

Such approaches opened the question of the geometrical interpretation of the algebraic
Hamiltonian which is written as one of the Lie algebra operators or a bilinear combination
in these operators. The geometrical-algebraic connection is well known for the Coulomb
problem [11] and Morse or P̈oschl–Teller potentials [3]. For the last case the algebraic
interpretation is realized by taking an auxiliary coordinate. By using such an auxiliary
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coordinate, Kais and Levine [12] gave an algebraic interpretation of the states in the infinitely
deep rectangular-well.

In the following we present an algebraic realization for the rectangular-well potential
with special boundary conditions, namely boundary conditions that are useful to describe
the scattering in theR-matrix framework [13, 14] without using an auxilliary coordinate.
We also describe the problem of the oscillator potential on the real semiaxis in the algebraic
framework. This approach will allow us to obtain algebraically a parametrization of theR-
function [13] which contains all the information needed to describe the scattering. This
parametrization could be considered as an extension of the algebraic scattering theory
proposed by Iachello and co-workers [3, 4].

2. Rectangular-well potential with boundary conditions

We consider the problem of a particle in a one-dimensional rectangular-well potential
V (r) = −V0 if r ∈ [0, a] whereV0 is the potential depth anda its radius. The eigenfunctions
and the spectrum of the HamiltonianH0 = − h̄2

2m
d2

dr2 − V0 with the boundary conditions

8(r = 0) = 0
d8

dr
(r = a) = 0 (1)

are well known. They are given by

|µ〉 = 8µ(r) =
√

2

a
sin

((
µ + 1

4

)
2π

r

a

)
(2)

Eµ = h̄2

2m

(
2π

a

)2(
µ + 1

4

)2

− V0 (3)

whereµ ∈ Z. The functions8µ are normalized:
∫ a

0 8∗
µ1

(r)8µ2(r) dr = δµ1µ2. We would
like to note that the second relation in equation (1) represents a particular case of the general
‘R-matrix boundary condition’ of the form8′(a)/8(a) = constant, used in the usualR-
matrix approaches [13]. When this constant is very small or 0, the internal eigenstates can
be interpreted physically as virtual levels [15]. In fact, the zero value of the first derivative
of the wavefunction atr = a implies the fact that the current of probability is zero, as in
the case when the wavefunction is chosen to be zero.

We will now consider the problem of theR-matrix description of the scattering problem
for this potential [13]. In this approach, the dynamics in the internal region is taken into
account through theR-matrix. For the potential scattering, theR-matrix reduces to the
R-function which can be written in terms of the internal spectrum and the values of the
normalized eigenfunctions at the boundaryr = a

R(E) =
∑

µ

γ 2
µ

Eµ − E
(4)

whereγµ =
√

h̄2/2ma8µ(a) andγ 2
µ is the reduced width of the levelµ. The R-function

together with the logarithmic derivative of the outgoing wavefunction atr = a allows a
complete description of the scattering.

Our aim is to give an algebraic description of the eigenvalue problem for the Hamiltonian

H0 = − h̄2

2m

d2

dr2
− V0 (5)
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with the R-matrix boundary condition (1).
We introduce the operatorT , defined by its action: Tf (r) = f (a − r). The

corresponding differential realization ofT is given by: T = e−a∂r eiπr∂r . Consequently
we introduce the operators:

Jz = a

2π
T

d

dr
− 1

4

J± =
(

cos

(
2π

r

a

)
± sin

(
2π

r

a

)
T

)(
a

2π
T

d

dr
− 1

4
± 1

2

)
(6)

which act on the space of complex valued functionsL = {f : [0, a] → C|f ∈
L2([0, a]), f ∈ C1([0, a]), f (0) = 0}. Taking into account the definition of the operators
Jz, J± and the obvious relations

T
d

dr
= − d

dr
T

T cos

(
2π

r

a

)
= cos

(
2π

r

a

)
T

T sin

(
2π

r

a

)
= − sin

(
2π

r

a

)
T (7)

we can establish the following commutation relations

[Jz, J±] = ±J±
[J+, J−] = −2Jz. (8)

Also, we have the Hermiticity properties

J †
z = Jz (9)

J
†
+ = J−. (10)

As an example, we prove the relation (9). We have

(f1, (Jz + 1
4)f2) = −

∫ a

0
f ∗

1
a

2π

df2(a − r)

dr
dr

= − a

2π
f ∗

1 (r)f2(a − r)|a0 +
∫ a

0

(
a

2π

df1(r)

dr

)∗
f2(a − r) dr

=
∫ a

0

(
a

2π

df1(a − r)

d(a − r)

)∗
f2(r) dr

= ((Jz + 1
4)f1, f2)

where we have used the conditionf1,2(r = 0) = 0. Relations (9) and (10) are now obvious.
Therefore, the operatorsJz, J± are closed under commutation relations (8) and express a
realization of the Lie algebrasu(1, 1). It is a straightforward exercise to prove that the
action of the operators (6) on the eigenfunctions (2) can be written

Jz|µ〉 = µ|µ〉
J±|µ〉 = (µ ± 1

2)|µ ± 1〉. (11)

The su(1, 1) Casimir operator isC = J 2
z − Jz − J+J−, and we have

C|µ〉 = − 1
4|µ〉. (12)

Relations (11) and (12) mean that the internal eigenstates|µ〉 can be taken as the standard
basis of the irreducible representation ofsu(1, 1) with j = − 1

2 or j (j + 1) = − 1
4 and
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µ ∈ Z. In fact, the relations (11) are thej = − 1
2 case of the generator action on the

standard basis.
Now, we can write the Hamiltonian (5) in the above algebraic framework as

H0 = h̄2

2m

(
2π

a

)2(
Jz + 1

4

)2

− V0. (13)

Thus, thesu(1, 1) Lie algebra is the dynamical algebra for the internal motion. The
appropriate realization is given in terms of a single variable and it is a differential realization,
i.e.

T =
∞∑
0

(a − 2r)n

n!

dn

drn

is an infinite-order differential operator.
The next step is to obtain a purely algebraic relation for the reduced widths for the

above case. Since the reduced widths are proportional to the values of the wavefunction
at the boundary, it seems that a purely algebraic description is not possible. Therefore, by
taking realization (6) into account, we obtain the asymptotic connection:

lim
r→a

J±ϕ(r) = lim
r→a

(Jz ± 1
2)ϕ(r) (14)

whereϕ(r) is an arbitrary function of classC1. If ϕ(r) = 8µ(r) and taking into account
equation (11), we have a simple recurrence relation:

(µ ± 1
2)8µ±1(a) = (µ ± 1

2)8µ(a). (15)

Consequently the reduced widths do not depend on the quantum numberµ as we have
µ ∈ Z. Therefore, all theγµ are equal, and we can choose a certain one, e.g.γ0. Then we
can algebraically obtain theR-function up to a multiplicative factor in the form:

R(E) =
∑
µ∈Z

γ 2
0

/(
h̄2

2m

(
2π

a

)2(
µ + 1

4

)2

− V0 − E

)
= aγ 2

0

h̄

√
m

2(V0 + E)
tan

(
a

h̄

√
2m(V0 + E)

)
.

The coefficientγ0 can be given only by the analytical expression of the state|0〉. It yields
γ 2

0 = h̄2/(ma2).
So far we have been interested in the simplest problem of a rectangular potential. In

the following we shall extend the algebraic description to other potentials.

3. Algebraization of other potentials

The realization (6) allows us to write

cos

(
2π

r

a

)
= (2Jz − 1)−1J+ + (2Jz + 1)−1J−

= J+(2Jz + 1)−1 + J−(2Jz − 1)−1. (16)

It is important to note that expression (16) is not in thesu(1, 1) universal enveloping algebra,
but it can be considered to be well defined on a dense subspace of thesu(1, 1) representation
Hilbert space [16]. We can algebraically write cos(n2πr/a), n ∈ N , by using the expression
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of cosnx as annth-order polynomial in cosx. For example, using the particular value of
the Casimir operator, we have

cos

(
4π

r

a

)
= 2(2Jz − 1)−1(2Jz − 3)−1J 2

+ + 2(2Jz + 1)−1(2Jz + 3)−1J 2
−. (17)

In order to write algebraically a certain potential which can be written as a Fourier series we
also need an expression for sin(2πr/a) in terms of the operatorsJz, J±. Such an expression
seems to be a very complicated one, and we succeeded in obtaining it using the explicit
realization of the standard basis (2). One can write

sin

(
2π

r

a

)
= 1

π

(
2Jz + 3

2

)−1(
2Jz − 1

2

)−1

+ 1

π

∞∑
n=1

(
2Jz + 3

2
− n

)−1(
2Jz − 1

2
− n

)−1

×
[(

Jz − 1

2

)−1

J+

]n

+ 1

π

∞∑
n=1

(
2Jz + 3

2
+ n

)−1(
2Jz − 1

2
+ n

)−1

×
[(

Jz + 1

2

)−1

J−

]n

. (18)

Therefore in principle, every potential developed in a Fourier series can be written in
an algebraic form. As an example we shall study the Hamiltonian

H = H0 + 2α cos

(
2π

r

a

)
= − h̄2

2m

d2

dr2
− V0 + 2α cos

(
2π

r

a

)
= h̄2

2m

(
2π

a

)2

(Jz + 1
4)2 − V0 + 2α{(2Jz − 1)−1J+ + (2Jz + 1)−1J−} (19)

whereα is a coupling parameter. We would like to obtain the eigenstates of the algebraic
Hamiltonian (19) in terms of theH0 eigenstates, i.e. in terms of thesu(1, 1) standard basis
(11).

We suppose that the eigenstate|E〉 of H has the eigenvalue of energyE, H |E〉 = E|E〉.
We can write

|E〉 =
∑
µ

CE
µ |µ〉. (20)

We admit that the action ofH on the above sum commutes with the sum. Whenα = 0,
this assumption gives(

E − h̄2

2m

(
2π

a

)2(
µ + 1

4

)2

+ V0

)
CE

µ = 0

for every integerµ, and one obtains that the energyE must beEµ. Therefore, we have
reobtained theH0 spectrum and its eigenstates.

In the above assumption concerning the Hamiltonian (19) we obtain the following
recursion relation

αCE
µ−1 +

[
h̄2

2m

(
2π

a

)2(
µ + 1

4

)2

− (E + V0)

]
CE

µ + αCE
µ+1 = 0 µ ∈ Z. (21)
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By writing CE
µ+1 = ξE

µ CE
µ , relation (21) reads as

α
1

ξE
µ−1

+
[

h̄2

2m

(
2π

a

)2(
µ + 1

4

)2

− (E + V0)

]
+ αξE

µ = 0. (22)

For the convergence of series (20) at the boundary, where|µ〉 → constant, it is necessary
to have limµ→∞ ξµ = 0 and limµ→−∞ 1/ξµ = 0. From equation (22), viewed as a
defining relation forξE

µ , we can obtain an equation for the unknown eigenvalues, involving
continuous fractions. The lowest non-trivial order of approximation for these continuous
fractions is equivalent to the truncation of the Hilbert space to the first three unperturbed
states. It is easy to check that in the second order inα2 the energy values contain terms
corresponding to an order higher than two in the perturbation theory. Following such
calculations and by introducing the energy eigenvalues into equation (21), one can obtain
the normalized eigenstates.

More generally, ifH contains, for example, a term cos(4πr/a) in the potential, then a
recursion relation similar to (21) can be written connecting five coefficientsCE

µ .

4. Oscillator potential with a boundary condition in the origin

In the following, we want to show that the above procedure also works for noncompact
intervals for the independent variable. As an example, we shall study the eigenfunction
problem of the harmonic oscillator Hamiltonian on the real semi-axis with theR-matrix
boundary condition

d8

dx
(x = 0) = 0. (23)

We takem = 1
2, ω = 2 and

H0 = p2 + x2 = −h̄2 d2

dx2
+ x2 x ∈ [0, ∞). (24)

The eigenfunctions of the above Hamiltonian with the boundary condition (23) are

|k〉 = 9k(x) = 1√√
πh̄22k−1(2k)!

exp

(
− 1

2h̄
x2

)
H2k

(√
1

h̄
x

)
(25)

wherek = 0, 1, 2, . . . andHn are the Hermite polynomials. The corresponding energies are

Ek = 4h̄(k + 1
4). (26)

In the following we realize thesu(1, 1) Lie algebra in terms of creation and annihilation
operators. The Hamiltonian of the harmonic oscillator can be written in terms of the creation
and annihilation operatorsa+ anda−:

a± = 1√
2h̄

(x ± ip) (27)

which satisfy the commutation relation

[a−, a+] = 1. (28)

The operators defined as

Jz = 1
4(a+a− + a−a+)

J± = 1
2a2

± (29)



su(1, 1) algebraic description of potentials 3675

satisfy thesu(1, 1) commutation relations ofsu(1, 1) (see equation (8)). We also have the
Hermiticity propertiesJ †

z = Jz and J
†
+ = J−. For realization (29) we have the Casimir

operator

C = J 2
z − Jz − J+J− = − 3

16

andH = 4h̄Jz.
Therefore, the eigenfunctions (25) represent the standard basis of thesu(1, 1)

representation withj = − 1
4. This representation belongs to the complementary series

of representation, and theJz spectrum ism = 1
4 + k, k = 0, 1, 2, . . .. We have the action

of the Jz, J± operators on theJz eigenfunctions

Jz|m〉 = m|m〉
J±|m〉 =

√
(m ± 1

4)(m ± 3
4)|m ± 1〉. (30)

As in the rectangular-well potential case, using realization (29) for thesu(1, 1) Lie algebra
operators, we can write the asymptotic connection

lim
x→0

J+f (x) = − lim
x→0

(Jz + 1
4)f (x). (31)

In the coordinate realization,|m〉 = f (x), by taking into account relation (31), we obtain
the recursion relation

lim
x→0

|m + 1〉 = −
√

m + 1
4

m + 3
4

lim
x→0

|m〉. (32)

The above recursion relation can be solved. It yields

( lim
x→0

|m〉)2 =
0

(
m + 1

4

)
0

(
m + 3

4

) 0(1)

0

(
1
2

)(
lim
x→0

∣∣∣∣1

4

〉)2

. (33)

We define theR-function [13] as

R(E) =
∑
m

γ 2
m

Em − E
(34)

whereγ 2
m = h̄2(limx→0 |m〉)2. Therefore, we obtain

γ 2
m =

0

(
m + 1

4

)
0

(
m + 3

4

) 1

0

(
1
2

)γ 2
1/4 (35)

and the above definedR-function is

R(E) = 1√
π

∞∑
k=0

0

(
k + 1

2

)
/0(k + 1)

4h̄

(
k + 1

4

)
− E

γ 2
1/4 (36)

whereγ1/4 cannot be fixed by algebraic means as in the previous rectangular-well case.
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5. Other algebraic Hamiltonians

We have proved the connection between thesu(1, 1) Lie algebra and the harmonic oscillator
with boundary condition (23). The appropriate operator realization is constructed as second-
order differential operators (see equation (29)). In the following we study an extension of
the algebraic treatment for other potentials defined on the real semi-axis. The key point in
the following is the relation

J+ + 2Jz + J− = x2/h̄ (37)

which can be obtained from equations (27) and (29).
Therefore, using relation (37), we can algebraically write all potentials defined on the

positive semi-axis which can be developed in a Taylor series inx2 convergent on the entire
semi-axis. To illustrate the algebraic treatment for such a potential, let us take the simple
example

H = H0 + αx2 = p2 + (1 + α)x2

= 4h̄Jz + h̄α(J+ + 2Jz + J−). (38)

The Hamiltonian (38) represents a harmonic oscillator with frequencyω = 2
√

1 + α.
We can compare the results obtained for the spectrum of this Hamiltonian with the well
known spectrum of the harmonic oscillator. We follow the same method that we used in
the case of the rectangular-well potential. Thus, we obtain the recursion relation

α

√
k(k − 1

2)CE
k−1 +

[
(4k + 1)

(
1 + 1

2
α

)
− ε

]
CE

k + α

√(
k + 1

2

)
(k + 1)CE

k+1 = 0 (39)

where|E〉 = ∑∞
k=0 CE

k |k〉 andE = h̄ε.
By using again the relationCE

k+1 = ξE
k CE

k for k = 0, 1, 2, . . . we obtain recurrence
relations for the coefficientsξE

k :

ξE
0 = −

√
2

α

[(
1 + α

2

)
− ε

]

α

√
k

(
k − 1

2

)
1

ξE
k−1

+
[
(4k + 1)

(
1 + α

2

)
− ε

]
+ α

√(
k + 1

2

)
(k + 1)ξE

k = 0 (40)

for k = 1, 2, . . .. Using the above relations we obtain an equation for the unknown energy
E = h̄ε. The approximation for the energy reads in the non-trivial lowest order:

ε0 =
(

1 + α

2

)
− α2

8
ε1 = 5

(
1 + α

2

)
+ α2

8
. (41)

These values can be compared with the exact values of the oscillator withω = 2
√

1 + α.
This approach can also be used to obtain the values of the perturbed wavefunctions at
x = 0 and, therefore, to calculate theR-function by the same method we used for the
rectangular-well potential in section 2.

6. Conclusions

We have described two particular one-dimensional problems in an algebraic framework,
i.e. the rectangular-well and harmonic-oscillator potentials. We have calculated the
corresponding energy spectra and theR-functions. The present realization of thesu(1, 1)

Lie algebra operators, equations (17), (18) and (37), allows us to write a large class of
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potentials in algebraic form, i.e. any potential defined on a bounded domain and expressed
in its Fourier series or defined on the positive semi-axis and expressed in Taylor series in
even powers ofx only.

An example for a trigonometric-like potential is worked out. For potentials more
complicated than the examples presented above, algebraic expressions in terms ofJ±, J0

can be obtained by generalizing equations (16) and (18). In this respect one can obtain an
algebraic Hamiltonian and the full exact solutions of its dynamical symmetry for the above
presentedR-matrix boundary conditions. We have proved the possibility of parametrizing
the R-function without using the explicit form of the wavefunction in a manner close to
the spirit of algebraic scattering theory [3, 4]. The technique developed in section 3 allows
the algebraic analysis and the exact solvability for anyL2, smooth potential defined on a
bounded domain or any even potential defined onR+ in principle.
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